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Abstract
In the framework of a multidimensional superposition principle a series of
computer experiments with integrable and nonintegrable models are carried out
with the goal of verifying the existence of switching effect and superposition
in soliton–perturbation interactions for a wide class of nonlinear PDEs.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

One of the reasons for the appearance of a multidimensional superposition principle (MSP)
[1, 2] was an attempt to explain an unusual type of kink interactions, namely their switching
from one state to another with different wave numbers, described in [3]. In effect, if we
do not take into account the mathematical background, the method is an exact version of
the well-known collective-variable approach (see, e.g., references in [4]). In this framework,
speaking about soliton–perturbation interactions, the soliton’s parameters become functions
depending on a perturbation, so that a general solution describing such an interaction consists
of components associated separately with a soliton and with a perturbation thus determining
the superposition of the previous ones. The effect of switching is embedded into the MSP as
well as the notion of a soliton itself.

Take, for instance, the usual KdV

ut + uux + uxxx = 0, u = u(x, t). (1)
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Here a superposition formula is of the form [2]
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where the function θ satisfies the equation

2θt + 2θxxx − θ3
x − 3kθ2

x − 3θ2
xx

θx + k
= 0, θ = θ(x, t). (3)

If we associate it with a localized perturbation in such a manner that

lim
x→±∞ θ(x, t) = θ± = const (4)

then before and after an interaction asymptotically far from the soliton we will have for the
perturbation initially placed on the right of the last one
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and respectively for the soliton itself

usolitonbefore/after = 3k2

[
1 − tanh2

(
kx1 − k3t + θ∓

2

)]
(6)

(if on the left, conversely uperturbationafter/before
and usolitonafter/before). That is, the perturbation as well

as the soliton is switched from one state to another.
As was shown in previous papers [1, 2], the approach works very well for integrable cases.

Most physical models belong to the so-called nonintegrable type, however. Thus the question
of whether (at least in a reasonable approximation) solitonic interactions can also be described
by means of the MSP, or in other words whether they are of the same nature, is important for
real research. One step in this direction is to verify the existence of an analogous switching
effect for the wide class of solitonic models and arbitrary perturbations, that would indirectly
indicate its universality in the above sense. Furthermore, this effect by itself can be important
from the viewpoint of possible application.

With this goal in the present paper, the related experiments are carried out for several well-
known equations of mathematical physics, both integrable (the above KdV) and nonintegrable
(the Kawahara and regularized long wave) equations.

2. Scheme of an experiment

Consider the following experiment (see figure 1(a)); call it experiment 1. At some moment
t0 take a soliton (S) and perturbation (P0) far enough from each other to avoid their mutual
overlapping. Choose for simplicity a coordinate system moving with this soliton and assume
for definiteness that the perturbation is initially located on the right and moves towards the
previous one. Suppose further that the interaction with the soliton, say, turns over this
perturbation. In figure 1 the profiles of the solution u(x, ti) and perturbation (P0, P1, P2) are
schematically shown for consecutive moments of time t0, t1, t2. Next, consider another but
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Figure 1. The principal scheme of the experiments. (a) Experiment 1. (b) Experiment 2. (c) The
plot of the difference u − u′.

similar experiment, experiment 2 (figure 1(b)), where the soliton is shifted in comparison with
the previous case. Here P0, P

′
1 and P ′

2 again indicate the profiles of the perturbation at the
same moments. Now plot the difference between the above solutions, u(x, ti) − u′(x, ti),
figure 3(c).

We see that between the solutions the perturbations increase while out of this region they
mutually eliminate each other. The fact is that in the framework of the MSP evolution of a
soliton and perturbation are independent (it comes in different dimensions), so that the result
of switching can always be presented in the form [1]

uperturbationafter
(x, t) = S+∞

−∞T (t0, t)uperturbationbefore
(x, t0)

where S+∞
−∞ is the operator determining switching only, and T (t0, t) is the operator determining

evolution in the absence of a soliton for the same time (strictly speaking t0 → −∞ and
t → +∞; as an example, see (5) and (3) respectively for the KdV case). By this means the
states P2 and P ′

2 of our perturbation are identical, and the difference between P1 and P ′
1 results

from the action of the switching operator only.
Above we have considered a very conventional perturbation. In a real situation an

arbitrary perturbation is collapsed to various wave packages and separate pulses moving one
after another with various velocities. As a result, if we additionally introduce periodical
boundary conditions, making the switching process continuous and repeated, then a distinct
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Figure 2. The experiments with the KdV equation. (a) Experiment 1 (the broken curve at t = 0
indicates the soliton position in experiment 2). (b) The plot of the difference u − u′.

picture of two different zones, a pulsation zone between solitons and calm zone outside of
them, has to arise.

3. Experiments with periodical boundary conditions

First of all, consider an integrable equation, namely the KdV (1), and its soliton solution (6).
Figure 2(a) demonstrates the typical scenario for our experiment (experiment 1) with the
initially localized perturbation. As seen, with time various waves completely fill all available
space. In figure 2(b), for the plot of the difference u(x, t) − u′(x, t) the appearance of the
two above-mentioned zones is clearly visible. In doing so, the amplitude of the waves in
the calm zone (call it secondary pulsations) is about 10−14 at the final moment t = 2000 of
the simulation, while the accuracy (see the comments below) in this experiment was about
10−16. Some of the difference can be explained by general accumulation of errors. To have a
measure of such deviations from the ideal, we will introduce the characteristic time for similar
experiments tchar, the average time for which an initially localized perturbation spreads to all
space. Here tchar = 20.

Next consider the Kawahara equation

ut + uux − uxxx + uxxxxx = 0, u = u(x, t),

one of the known representatives of the so-called nonintegrable models. Basically, this
equation is a modification of the usual KdV for situations when we have to take into account
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Figure 3. The experiments with the Kawahara equation. (a) Experiment 1 (the broken curve at
t = 0 indicates the soliton position in experiment 2). (b) The plot of the difference u − u′.

the higher order dispersion effects to balance the nonlinearity. One of its solitonic solutions is
of the form

−105

169
cosh−4

(
x

2
√

13
+

18

169
√

13
t

)

(see [5] and references therein on its solutions and physical applications). Figure 3(a)
demonstrates the evolution of the initial distribution in the first experiment. In the case
with this equation, however, very small but perceptible secondary pulsations appear also in the
calm zone. Although at times comparable with tchar = 100 they cannot be taken into account,
but with time they grow (for example, for the times t = 2 × 104, 105, 2.5 × 105 their maximal
amplitude Asp is 5 × 10−3, 3 × 10−2 and 10−1 respectively), and at times as great as 106 they
are compatible with the amplitude of the waves in the pulsation zone itself (see figure 3(b)).
We emphasize, however, that this takes place only after a very long time.

The next model of interest is the RLW equation

ut + uux + uxxx − utxx = 0, u = u(x, t)

with the following solitonic solution

12k2

1 − 4k2
cosh−2

(
kx +

4k3

4k2 − 1
t

)
, k = const.

In due course, this equation has attracted intended attention of researchers because of its very
small inelasticity of solitonic interactions and nearness to the KdV (a review can be found in
the book [6], and from previous works see, e.g., [7]).
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Figure 4. The experiments with the RLW equation. (a) Experiment 1 (the broken curve at t = 0
indicates the soliton position in experiment 2). (b) The plot of the difference u − u′.

In contrast to the previous equation, here an arbitrary perturbation collapses to a series
of mainly separated soliton-like pulses (figure 4(a), experiment 1). However, the pulsation
zone is easily discernible. As shown in figure 4(b), after some time secondary pulsations
appear in the calm zone also and grow with time as well as in the previous case. Contrary to
expectations (it is agreed that the RLW is close to integrable NPDEs in its properties more
than any other nonintegrable model) it turned out that these secondary pulsations are more
pronounced than, e.g., in the Kawahara equation case. The related dynamics is as follows:
Asp = 0.05, 0.3, 1.2, 2 for t = 400, 1000, 1600, 2200. They became compatible with the
main pulsations at times of the order of 4000 units while tchar = 200.

Finally, let us say a few words about the computational aspects of the above experiments.
Firstly, remember that the periodical boundary conditions

u(x, t) = u(x + L, t)

(see the figures concerning L) were used. Secondly, the pseudospectral (Fourier expansion)
technique was applied on the spatial variable with the related number of modes and time
integrator for stiff problems required for the highest of them to reach an adequate accuracy
for our goal. Further, whenever possible, all calculations were performed with a maximal
accuracy permutable by the capacity of the processor (long double, 18 digits). According
to the Runge principle of step-doubling, an error was ε ∼ 10−16. In difficult cases (the
experiments with the Kawahara equation for very long times) an accuracy with ε ∼ 10−8 was
used for a reasonable CPU time.
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Figure 5. The experiments with the KdV equation and initial perturbations differing by a scale
factor 1.001. (a) Experiment 1 (the broken curve at t = 0 schematically shows the profiles of the
soliton and perturbation in experiment 2). (b) The plot of the difference u − u′.

4. Conclusion

The experiments carried out demonstrate the essential similarity between the soliton
interactions in the integrable and nonintegrable models from the MSP viewpoint. It should
be especially emphasized here that the secondary pulsations in the last two examples do
not contradict, by themselves, the existence of exact soliton–perturbation superposition. As
shown in [1] (figure 4 and the related formulae), superposition implies both elastic and
inelastic interactions depending on asymptotical behaviour of a component associated with
a perturbation (for instance, in (2) this is θ(x, t); recall the demand (4) for the possibility
of physical separation of the soliton and a perturbation before and after a collision). In the
example cited, the soliton and perturbation remain linked with each other by a small shelf even
for long distances between them. As a result, the time and distance needed for full switching
there are dramatically increased. For small distances, this is reflected in some defect of a
perturbation envelope ‘after’ an interaction. In our experiments, once arisen, it will evaluate
and progress even without the contributions from the following same interactions. Figures 5(a)
and (b) show an experiment with the KdV where the initial perturbations insignificantly differ
(by the scaling factor 1.001), that simulates, say, a defect arising after single, not full, switching.
As a consequence of this, we see a picture similar to those observed for the nonintegrable
models.

In conclusion, we point out one more detail in favour of this explanation. As seen from
figure 3, in spite of very significant time of the simulation and innumerable collisions with other
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waves, there is no indication of the collapse or degradation of the soliton in the experiment
with the Kawahara equation, where it would be easy to discover.
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